Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Matthias Mayr
limbo
Commits
e5ebd35e
Commit
e5ebd35e
authored
Dec 19, 2017
by
Konstantinos Chatzilygeroudis
Browse files
Better MeanFunctionARD gradients and fixes in tests
parent
38302016
Changes
4
Hide whitespace changes
Inline
Side-by-side
src/limbo/mean/function_ard.hpp
View file @
e5ebd35e
...
...
@@ -53,40 +53,59 @@ namespace limbo {
/// Functor used to optimize the mean function using the maximum likelihood principle
///
///
For the moment, it ignor
es the hyperparameters of the underlying mean function, if any
///
It incorporat
es the hyperparameters of the underlying mean function, if any
/// @see limbo::model::gp::KernelMeanLFOpt, limbo::model::gp::MeanLFOpt
template
<
typename
Params
,
typename
MeanFunction
>
struct
FunctionARD
:
public
BaseMean
<
Params
>
{
FunctionARD
(
size_t
dim_out
=
1
)
:
_mean_function
(
dim_out
),
_tr
(
dim_out
,
dim_out
+
1
)
{
Eigen
::
VectorXd
h
=
Eigen
::
VectorXd
::
Zero
(
dim_out
*
(
dim_out
+
1
));
Eigen
::
VectorXd
h
=
Eigen
::
VectorXd
::
Zero
(
dim_out
*
(
dim_out
+
1
)
+
_mean_function
.
h_params_size
()
);
for
(
size_t
i
=
0
;
i
<
dim_out
;
i
++
)
h
[
i
*
(
dim_out
+
2
)]
=
1
;
if
(
_mean_function
.
h_params_size
()
>
0
)
h
.
tail
(
_mean_function
.
h_params_size
())
=
_mean_function
.
h_params
();
this
->
set_h_params
(
h
);
}
size_t
h_params_size
()
const
{
return
_tr
.
rows
()
*
_tr
.
cols
();
}
size_t
h_params_size
()
const
{
return
_tr
.
rows
()
*
_tr
.
cols
()
+
_mean_function
.
h_params_size
()
;
}
Eigen
::
VectorXd
h_params
()
const
{
return
_h_params
;
}
Eigen
::
VectorXd
h_params
()
const
{
Eigen
::
VectorXd
params
(
h_params_size
());
params
.
head
(
_tr
.
rows
()
*
_tr
.
cols
())
=
_h_params
;
if
(
_mean_function
.
h_params_size
()
>
0
)
params
.
tail
(
_mean_function
.
h_params_size
())
=
_mean_function
.
h_params
();
return
params
;
}
void
set_h_params
(
const
Eigen
::
VectorXd
&
p
)
{
_h_params
=
p
;
_h_params
=
p
.
head
(
_tr
.
rows
()
*
_tr
.
cols
())
;
for
(
int
c
=
0
;
c
<
_tr
.
cols
();
c
++
)
for
(
int
r
=
0
;
r
<
_tr
.
rows
();
r
++
)
_tr
(
r
,
c
)
=
p
[
r
*
_tr
.
cols
()
+
c
];
if
(
_mean_function
.
h_params_size
()
>
0
)
_mean_function
.
set_h_params
(
p
.
tail
(
_mean_function
.
h_params_size
()));
}
template
<
typename
GP
>
Eigen
::
MatrixXd
grad
(
const
Eigen
::
VectorXd
&
x
,
const
GP
&
gp
)
const
{
Eigen
::
MatrixXd
grad
=
Eigen
::
MatrixXd
::
Zero
(
_tr
.
rows
(),
_
h_params
.
size
());
Eigen
::
MatrixXd
grad
=
Eigen
::
MatrixXd
::
Zero
(
_tr
.
rows
(),
h_params
_
size
());
Eigen
::
VectorXd
m
=
_mean_function
(
x
,
gp
);
for
(
int
i
=
0
;
i
<
_tr
.
rows
();
i
++
)
{
grad
.
block
(
i
,
i
*
_tr
.
cols
(),
1
,
_tr
.
cols
()
-
1
)
=
m
.
transpose
();
grad
(
i
,
(
i
+
1
)
*
_tr
.
cols
()
-
1
)
=
1
;
}
if
(
_mean_function
.
h_params_size
()
>
0
)
{
Eigen
::
MatrixXd
m_grad
=
Eigen
::
MatrixXd
::
Zero
(
_tr
.
rows
()
+
1
,
_mean_function
.
h_params_size
());
m_grad
.
block
(
0
,
0
,
_tr
.
rows
(),
_mean_function
.
h_params_size
())
=
_mean_function
.
grad
(
x
,
gp
);
Eigen
::
MatrixXd
gg
=
_tr
*
m_grad
;
grad
.
block
(
0
,
h_params_size
()
-
_mean_function
.
h_params_size
(),
_tr
.
rows
(),
_mean_function
.
h_params_size
())
=
gg
;
}
return
grad
;
}
...
...
src/tests/test_gp.cpp
View file @
e5ebd35e
...
...
@@ -50,15 +50,15 @@
#include <boost/test/unit_test.hpp>
#include <limbo/acqui/ucb.hpp>
#include <limbo/kernel/exp.hpp>
#include <limbo/kernel/matern_five_halves.hpp>
#include <limbo/kernel/matern_three_halves.hpp>
#include <limbo/kernel/exp.hpp>
#include <limbo/kernel/squared_exp_ard.hpp>
#include <limbo/mean/constant.hpp>
#include <limbo/mean/function_ard.hpp>
#include <limbo/model/gp.hpp>
#include <limbo/model/gp/kernel_loo_opt.hpp>
#include <limbo/model/gp/kernel_lf_opt.hpp>
#include <limbo/model/gp/kernel_loo_opt.hpp>
#include <limbo/model/gp/kernel_mean_lf_opt.hpp>
#include <limbo/model/gp/mean_lf_opt.hpp>
#include <limbo/opt/grid_search.hpp>
...
...
@@ -152,9 +152,9 @@ BOOST_AUTO_TEST_CASE(test_gp_check_lf_grad)
}
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
test_samples
.
push_back
(
tools
::
random_vector
(
4
+
1
));
test_samples_mean
.
push_back
(
tools
::
random_vector
(
6
));
test_samples_kernel_mean
.
push_back
(
tools
::
random_vector
(
6
+
4
+
1
));
test_samples
.
push_back
(
tools
::
random_vector
(
gp
.
kernel_function
().
h_params_size
()
));
test_samples_mean
.
push_back
(
tools
::
random_vector
(
gp
.
mean_function
().
h_params_size
()
));
test_samples_kernel_mean
.
push_back
(
tools
::
random_vector
(
gp
.
kernel_function
().
h_params_size
()
+
gp
.
mean_function
().
h_params_size
()
));
}
gp
.
compute
(
samples
,
observations
);
...
...
@@ -244,8 +244,8 @@ BOOST_AUTO_TEST_CASE(test_gp_check_lf_grad_noise)
}
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
test_samples
.
push_back
(
tools
::
random_vector
(
4
+
2
));
test_samples_kernel_mean
.
push_back
(
tools
::
random_vector
(
6
+
4
+
2
));
test_samples
.
push_back
(
tools
::
random_vector
(
gp
.
kernel_function
().
h_params_size
()
));
test_samples_kernel_mean
.
push_back
(
tools
::
random_vector
(
gp
.
kernel_function
().
h_params_size
()
+
gp
.
mean_function
().
h_params_size
()
));
}
gp
.
compute
(
samples
,
observations
);
...
...
@@ -297,7 +297,7 @@ BOOST_AUTO_TEST_CASE(test_gp_check_loo_grad)
}
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
test_samples
.
push_back
(
tools
::
random_vector
(
4
+
1
));
test_samples
.
push_back
(
tools
::
random_vector
(
gp
.
kernel_function
().
h_params_size
()
));
}
gp
.
compute
(
samples
,
observations
);
...
...
@@ -367,7 +367,7 @@ BOOST_AUTO_TEST_CASE(test_gp_check_loo_grad_noise)
}
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
test_samples
.
push_back
(
tools
::
random_vector
(
4
+
2
));
test_samples
.
push_back
(
tools
::
random_vector
(
gp
.
kernel_function
().
h_params_size
()
));
}
gp
.
compute
(
samples
,
observations
);
...
...
src/tests/test_kernel.cpp
View file @
e5ebd35e
...
...
@@ -157,7 +157,7 @@ void check_kernel(size_t N, size_t K)
BOOST_AUTO_TEST_CASE
(
test_grad_exp
)
{
for
(
int
i
=
1
;
i
<
10
;
i
++
)
{
for
(
int
i
=
1
;
i
<
=
10
;
i
++
)
{
check_kernel
<
kernel
::
Exp
<
Params
>>
(
i
,
100
);
check_kernel
<
kernel
::
Exp
<
ParamsNoise
>>
(
i
,
100
);
}
...
...
@@ -165,7 +165,7 @@ BOOST_AUTO_TEST_CASE(test_grad_exp)
BOOST_AUTO_TEST_CASE
(
test_grad_matern_three
)
{
for
(
int
i
=
1
;
i
<
10
;
i
++
)
{
for
(
int
i
=
1
;
i
<
=
10
;
i
++
)
{
check_kernel
<
kernel
::
MaternThreeHalves
<
Params
>>
(
i
,
100
);
check_kernel
<
kernel
::
MaternThreeHalves
<
ParamsNoise
>>
(
i
,
100
);
}
...
...
@@ -173,7 +173,7 @@ BOOST_AUTO_TEST_CASE(test_grad_matern_three)
BOOST_AUTO_TEST_CASE
(
test_grad_matern_five
)
{
for
(
int
i
=
1
;
i
<
10
;
i
++
)
{
for
(
int
i
=
1
;
i
<
=
10
;
i
++
)
{
check_kernel
<
kernel
::
MaternFiveHalves
<
Params
>>
(
i
,
100
);
check_kernel
<
kernel
::
MaternFiveHalves
<
ParamsNoise
>>
(
i
,
100
);
}
...
...
@@ -182,15 +182,15 @@ BOOST_AUTO_TEST_CASE(test_grad_matern_five)
BOOST_AUTO_TEST_CASE
(
test_grad_SE_ARD
)
{
Params
::
kernel_squared_exp_ard
::
set_k
(
0
);
for
(
int
i
=
1
;
i
<
10
;
i
++
)
{
for
(
int
i
=
1
;
i
<
=
10
;
i
++
)
{
check_kernel
<
kernel
::
SquaredExpARD
<
Params
>>
(
i
,
100
);
check_kernel
<
kernel
::
SquaredExpARD
<
ParamsNoise
>>
(
i
,
100
);
}
// THIS TEST FAILS!
// Params::kernel_squared_exp_ard::set_k(1);
// for (int i = 1; i <
2
; i++) {
// check_kernel<kernel::SquaredExpARD<Params>>(i, 10);
// for (int i = 1; i <
= 10
; i++) {
// check_kernel<kernel::SquaredExpARD<Params>>(i, 10
0
);
// }
}
...
...
src/tests/test_mean.cpp
View file @
e5ebd35e
...
...
@@ -52,6 +52,7 @@
#include <limbo/mean/constant.hpp>
#include <limbo/mean/function_ard.hpp>
#include <limbo/mean/null_function.hpp>
#include <limbo/tools/macros.hpp>
#include <limbo/tools/random_generator.hpp>
...
...
@@ -103,21 +104,32 @@ void check_mean(size_t N, size_t K)
Eigen
::
VectorXd
v
=
tools
::
random_vector
(
N
).
array
()
*
10.
-
5.
;
std
::
tie
(
error
,
analytic
,
finite_diff
)
=
check_grad
(
mean
,
hp
,
v
);
// std::cout << error << ": " << analytic
.transpose()
<< " vs " << finite_diff
.transpose()
<< std::endl;
// std::cout << error << ": " << analytic << " vs " << finite_diff << std::endl;
BOOST_CHECK
(
error
<
1e-6
);
}
}
BOOST_AUTO_TEST_CASE
(
test_mean_constant
)
{
for
(
int
i
=
1
;
i
<
10
;
i
++
)
{
for
(
int
i
=
1
;
i
<
=
10
;
i
++
)
{
check_mean
<
mean
::
Constant
<
Params
>>
(
i
,
100
);
}
}
BOOST_AUTO_TEST_CASE
(
test_mean_function_ard
)
{
for
(
int
i
=
1
;
i
<
10
;
i
++
)
{
// This test checks the gradients computation of FunctionARD when the base mean function
// also has tunable parameters
for
(
int
i
=
1
;
i
<=
10
;
i
++
)
{
check_mean
<
mean
::
FunctionARD
<
Params
,
mean
::
Constant
<
Params
>>>
(
i
,
100
);
}
}
BOOST_AUTO_TEST_CASE
(
test_mean_function_ard_dummy
)
{
// This test checks the gradients computation of FunctionARD when the base mean function
// has no tunable parameters
for
(
int
i
=
1
;
i
<=
10
;
i
++
)
{
check_mean
<
mean
::
FunctionARD
<
Params
,
mean
::
NullFunction
<
Params
>>>
(
i
,
100
);
}
}
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment