Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Matthias Mayr
limbo
Commits
710e01b1
Commit
710e01b1
authored
May 19, 2016
by
Konstantinos Chatzilygeroudis
Browse files
Compiling and cleaning
parent
5d78c14e
Changes
6
Hide whitespace changes
Inline
Side-by-side
src/benchmarks/bayesopt/hp_opt.cpp
View file @
710e01b1
...
...
@@ -7,56 +7,54 @@
template
<
typename
Function
>
void
benchmark
(
const
bopt_params
&
par
,
const
std
::
string
&
name
)
{
auto
t1
=
std
::
chrono
::
steady_clock
::
now
();
Benchmark
<
Function
>
benchmark
(
par
);
vectord
result
(
Function
::
dim_in
);
benchmark
.
optimize
(
result
);
auto
time_running
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
milliseconds
>
(
std
::
chrono
::
steady_clock
::
now
()
-
t1
).
count
();
std
::
cout
.
precision
(
17
);
std
::
cout
<<
std
::
endl
;
auto
best
=
benchmark
.
evaluateSample
(
result
);
double
accuracy
=
benchmark
.
accuracy
(
best
);
std
::
cout
<<
name
<<
std
::
endl
;
std
::
cout
<<
"Result: "
<<
std
::
fixed
<<
result
<<
" -> "
<<
best
<<
std
::
endl
;
std
::
cout
<<
"Smallest difference: "
<<
accuracy
<<
std
::
endl
;
std
::
cout
<<
"Time running: "
<<
time_running
<<
"ms"
<<
std
::
endl
<<
std
::
endl
;
std
::
ofstream
res_file
(
name
+
".dat"
,
std
::
ios_base
::
out
|
std
::
ios_base
::
app
);
res_file
.
precision
(
17
);
res_file
<<
std
::
fixed
<<
accuracy
<<
" "
<<
time_running
<<
std
::
endl
;
auto
t1
=
std
::
chrono
::
steady_clock
::
now
();
Benchmark
<
Function
>
benchmark
(
par
);
vectord
result
(
Function
::
dim_in
);
benchmark
.
optimize
(
result
);
auto
time_running
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
milliseconds
>
(
std
::
chrono
::
steady_clock
::
now
()
-
t1
).
count
();
std
::
cout
.
precision
(
17
);
std
::
cout
<<
std
::
endl
;
auto
best
=
benchmark
.
evaluateSample
(
result
);
double
accuracy
=
benchmark
.
accuracy
(
best
);
std
::
cout
<<
name
<<
std
::
endl
;
std
::
cout
<<
"Result: "
<<
std
::
fixed
<<
result
<<
" -> "
<<
best
<<
std
::
endl
;
std
::
cout
<<
"Smallest difference: "
<<
accuracy
<<
std
::
endl
;
std
::
cout
<<
"Time running: "
<<
time_running
<<
"ms"
<<
std
::
endl
<<
std
::
endl
;
std
::
ofstream
res_file
(
name
+
".dat"
,
std
::
ios_base
::
out
|
std
::
ios_base
::
app
);
res_file
.
precision
(
17
);
res_file
<<
std
::
fixed
<<
accuracy
<<
" "
<<
time_running
<<
std
::
endl
;
}
int
main
(
int
nargs
,
char
*
args
[])
int
main
(
int
nargs
,
char
*
args
[])
{
srand
(
time
(
NULL
));
bopt_params
par
=
initialize_parameters_to_default
();
par
.
n_iterations
=
190
;
par
.
n_inner_iterations
=
250
;
par
.
n_iter_relearn
=
1
;
//par.random_seed = 0;
par
.
verbose_level
=
0
;
par
.
noise
=
1e-10
;
par
.
sigma_s
=
1
;
par
.
sc_type
=
SC_ML
;
par
.
init_method
=
3
;
strcpy
(
par
.
crit_name
,
"cLCB"
);
par
.
crit_params
[
0
]
=
0.125
;
par
.
n_crit_params
=
1
;
par
.
force_jump
=
0
;
strcpy
(
par
.
kernel
.
name
,
"kSEARD"
);
benchmark
<
BraninNormalized
>
(
par
,
"branin"
);
benchmark
<
Hartman6
>
(
par
,
"hartman6"
);
benchmark
<
Hartman3
>
(
par
,
"hartman3"
);
benchmark
<
Rastrigin
>
(
par
,
"rastrigin"
);
benchmark
<
Sphere
>
(
par
,
"sphere"
);
benchmark
<
Ellipsoid
>
(
par
,
"ellipsoid"
);
benchmark
<
GoldenPrice
>
(
par
,
"goldenprice"
);
benchmark
<
SixHumpCamel
>
(
par
,
"sixhumpcamel"
);
srand
(
time
(
NULL
));
bopt_params
par
=
initialize_parameters_to_default
();
par
.
n_iterations
=
190
;
par
.
n_inner_iterations
=
250
;
par
.
n_iter_relearn
=
1
;
//par.random_seed = 0;
par
.
verbose_level
=
0
;
par
.
noise
=
1e-10
;
par
.
sigma_s
=
1
;
par
.
sc_type
=
SC_ML
;
par
.
init_method
=
3
;
strcpy
(
par
.
crit_name
,
"cLCB"
);
par
.
crit_params
[
0
]
=
0.125
;
par
.
n_crit_params
=
1
;
par
.
force_jump
=
0
;
strcpy
(
par
.
kernel
.
name
,
"kSEARD"
);
benchmark
<
BraninNormalized
>
(
par
,
"branin"
);
benchmark
<
Hartman6
>
(
par
,
"hartman6"
);
benchmark
<
Hartman3
>
(
par
,
"hartman3"
);
benchmark
<
Rastrigin
>
(
par
,
"rastrigin"
);
benchmark
<
Sphere
>
(
par
,
"sphere"
);
benchmark
<
Ellipsoid
>
(
par
,
"ellipsoid"
);
benchmark
<
GoldenPrice
>
(
par
,
"goldenprice"
);
benchmark
<
SixHumpCamel
>
(
par
,
"sixhumpcamel"
);
return
0
;
}
src/benchmarks/bayesopt/simple.cpp
View file @
710e01b1
...
...
@@ -7,54 +7,54 @@
template
<
typename
Function
>
void
benchmark
(
const
bopt_params
&
par
,
const
std
::
string
&
name
)
{
auto
t1
=
std
::
chrono
::
steady_clock
::
now
();
Benchmark
<
Function
>
benchmark
(
par
);
vectord
result
(
Function
::
dim_in
);
benchmark
.
optimize
(
result
);
auto
time_running
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
milliseconds
>
(
std
::
chrono
::
steady_clock
::
now
()
-
t1
).
count
();
std
::
cout
.
precision
(
17
);
std
::
cout
<<
std
::
endl
;
auto
best
=
benchmark
.
evaluateSample
(
result
);
double
accuracy
=
benchmark
.
accuracy
(
best
);
auto
t1
=
std
::
chrono
::
steady_clock
::
now
();
Benchmark
<
Function
>
benchmark
(
par
);
vectord
result
(
Function
::
dim_in
);
benchmark
.
optimize
(
result
);
auto
time_running
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
milliseconds
>
(
std
::
chrono
::
steady_clock
::
now
()
-
t1
).
count
();
std
::
cout
.
precision
(
17
);
std
::
cout
<<
std
::
endl
;
auto
best
=
benchmark
.
evaluateSample
(
result
);
double
accuracy
=
benchmark
.
accuracy
(
best
);
std
::
cout
<<
name
<<
std
::
endl
;
std
::
cout
<<
"Result: "
<<
std
::
fixed
<<
result
<<
" -> "
<<
best
<<
std
::
endl
;
std
::
cout
<<
"Smallest difference: "
<<
accuracy
<<
std
::
endl
;
std
::
cout
<<
"Time running: "
<<
time_running
<<
"ms"
<<
std
::
endl
<<
std
::
endl
;
std
::
cout
<<
name
<<
std
::
endl
;
std
::
cout
<<
"Result: "
<<
std
::
fixed
<<
result
<<
" -> "
<<
best
<<
std
::
endl
;
std
::
cout
<<
"Smallest difference: "
<<
accuracy
<<
std
::
endl
;
std
::
cout
<<
"Time running: "
<<
time_running
<<
"ms"
<<
std
::
endl
<<
std
::
endl
;
std
::
ofstream
res_file
(
name
+
".dat"
,
std
::
ios_base
::
out
|
std
::
ios_base
::
app
);
res_file
.
precision
(
17
);
res_file
<<
std
::
fixed
<<
accuracy
<<
" "
<<
time_running
<<
std
::
endl
;
std
::
ofstream
res_file
(
name
+
".dat"
,
std
::
ios_base
::
out
|
std
::
ios_base
::
app
);
res_file
.
precision
(
17
);
res_file
<<
std
::
fixed
<<
accuracy
<<
" "
<<
time_running
<<
std
::
endl
;
}
int
main
(
int
nargs
,
char
*
args
[])
int
main
(
int
nargs
,
char
*
args
[])
{
srand
(
time
(
NULL
));
bopt_params
par
=
initialize_parameters_to_default
();
par
.
n_iterations
=
190
;
par
.
n_inner_iterations
=
250
;
par
.
n_iter_relearn
=
0
;
//par.random_seed = 0;
par
.
verbose_level
=
0
;
par
.
noise
=
1e-10
;
par
.
sigma_s
=
1
;
par
.
sc_type
=
SC_ML
;
par
.
init_method
=
3
;
strcpy
(
par
.
crit_name
,
"cLCB"
);
par
.
crit_params
[
0
]
=
0.125
;
par
.
n_crit_params
=
1
;
par
.
force_jump
=
0
;
strcpy
(
par
.
kernel
.
name
,
"kMaternISO5"
);
srand
(
time
(
NULL
));
bopt_params
par
=
initialize_parameters_to_default
();
par
.
n_iterations
=
190
;
par
.
n_inner_iterations
=
250
;
par
.
n_iter_relearn
=
0
;
//par.random_seed = 0;
par
.
verbose_level
=
0
;
par
.
noise
=
1e-10
;
par
.
sigma_s
=
1
;
par
.
sc_type
=
SC_ML
;
par
.
init_method
=
3
;
strcpy
(
par
.
crit_name
,
"cLCB"
);
par
.
crit_params
[
0
]
=
0.125
;
par
.
n_crit_params
=
1
;
par
.
force_jump
=
0
;
strcpy
(
par
.
kernel
.
name
,
"kMaternISO5"
);
benchmark
<
BraninNormalized
>
(
par
,
"branin"
);
benchmark
<
Hartman6
>
(
par
,
"hartman6"
);
benchmark
<
Hartman3
>
(
par
,
"hartman3"
);
benchmark
<
Rastrigin
>
(
par
,
"rastrigin"
);
benchmark
<
Sphere
>
(
par
,
"sphere"
);
benchmark
<
Ellipsoid
>
(
par
,
"ellipsoid"
);
benchmark
<
GoldenPrice
>
(
par
,
"goldenprice"
);
benchmark
<
SixHumpCamel
>
(
par
,
"sixhumpcamel"
);
benchmark
<
BraninNormalized
>
(
par
,
"branin"
);
benchmark
<
Hartman6
>
(
par
,
"hartman6"
);
benchmark
<
Hartman3
>
(
par
,
"hartman3"
);
benchmark
<
Rastrigin
>
(
par
,
"rastrigin"
);
benchmark
<
Sphere
>
(
par
,
"sphere"
);
benchmark
<
Ellipsoid
>
(
par
,
"ellipsoid"
);
benchmark
<
GoldenPrice
>
(
par
,
"goldenprice"
);
benchmark
<
SixHumpCamel
>
(
par
,
"sixhumpcamel"
);
return
0
;
}
src/benchmarks/bayesopt/testfunctions.hpp
View file @
710e01b1
/*
-------------------------------------------------------------------------
This file is part of BayesOpt, an efficient C++ library for
This file is part of BayesOpt, an efficient C++ library for
Bayesian optimization.
Copyright (C) 2011-2013 Ruben Martinez-Cantin <rmcantin@unizar.es>
BayesOpt is free software: you can redistribute it and/or modify it
BayesOpt is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BayesOpt is distributed in the hope that it will be useful, but
BayesOpt is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
...
...
@@ -39,7 +39,7 @@ inline double sign(double x)
return
0
;
}
inline
double
sqr
(
double
x
)
inline
double
sqr
(
double
x
)
{
return
x
*
x
;
};
...
...
@@ -87,9 +87,9 @@ struct Sphere {
matrixd
solutions
()
const
{
matrixd
sols
(
1
,
2
);
sols
<<=
0.5
,
0.5
;
return
sols
;
matrixd
sols
(
1
,
2
);
sols
<<=
0.5
,
0.5
;
return
sols
;
}
};
...
...
@@ -110,9 +110,9 @@ struct Ellipsoid {
matrixd
solutions
()
const
{
matrixd
sols
(
1
,
2
);
sols
<<=
0.5
,
0.5
;
return
sols
;
matrixd
sols
(
1
,
2
);
sols
<<=
0.5
,
0.5
;
return
sols
;
}
};
...
...
@@ -130,10 +130,10 @@ struct Rastrigin {
matrixd
solutions
()
const
{
matrixd
sols
(
1
,
dim_in
);
for
(
size_t
i
=
0
;
i
<
dim_in
;
++
i
)
sols
(
0
,
i
)
=
0
;
return
sols
;
matrixd
sols
(
1
,
dim_in
);
for
(
size_t
i
=
0
;
i
<
dim_in
;
++
i
)
sols
(
0
,
i
)
=
0
;
return
sols
;
}
};
...
...
@@ -165,9 +165,9 @@ struct Hartman3 {
matrixd
solutions
()
const
{
matrixd
sols
(
1
,
3
);
sols
<<=
0.114614
,
0.555649
,
0.852547
;
return
sols
;
matrixd
sols
(
1
,
3
);
sols
<<=
0.114614
,
0.555649
,
0.852547
;
return
sols
;
}
};
...
...
@@ -202,9 +202,9 @@ struct Hartman6 {
matrixd
solutions
()
const
{
matrixd
sols
(
1
,
6
);
sols
<<=
0.20169
,
0.150011
,
0.476874
,
0.275332
,
0.311652
,
0.6573
;
return
sols
;
matrixd
sols
(
1
,
6
);
sols
<<=
0.20169
,
0.150011
,
0.476874
,
0.275332
,
0.311652
,
0.6573
;
return
sols
;
}
};
...
...
@@ -226,9 +226,9 @@ struct GoldenPrice {
matrixd
solutions
()
const
{
matrixd
sols
(
1
,
2
);
sols
<<=
0.5
,
0.25
;
return
sols
;
matrixd
sols
(
1
,
2
);
sols
<<=
0.5
,
0.25
;
return
sols
;
}
};
...
...
@@ -245,67 +245,66 @@ struct BraninNormalized {
matrixd
solutions
()
const
{
matrixd
sols
(
3
,
2
);
sols
<<=
0.1238938
,
0.818333
,
0.5427728
,
0.151667
,
0.961652
,
0.1650
;
return
sols
;
matrixd
sols
(
3
,
2
);
sols
<<=
0.1238938
,
0.818333
,
0.5427728
,
0.151667
,
0.961652
,
0.1650
;
return
sols
;
}
};
struct
SixHumpCamel
{
static
constexpr
size_t
dim_in
=
2
;
static
constexpr
size_t
dim_out
=
1
;
double
operator
()(
const
vectord
&
x
)
const
{
double
x1_2
=
x
(
0
)
*
x
(
0
);
double
x2_2
=
x
(
1
)
*
x
(
1
);
double
tmp1
=
(
4
-
2.1
*
x1_2
+
(
x1_2
*
x1_2
)
/
3
)
*
x1_2
;
double
tmp2
=
x
(
0
)
*
x
(
1
);
double
tmp3
=
(
-
4
+
4
*
x2_2
)
*
x2_2
;
return
tmp1
+
tmp2
+
tmp3
;
}
matrixd
solutions
()
const
{
matrixd
sols
(
2
,
2
);
sols
<<=
0.0898
,
-
0.7126
,
-
0.0898
,
0.7126
;
return
sols
;
}
static
constexpr
size_t
dim_in
=
2
;
static
constexpr
size_t
dim_out
=
1
;
double
operator
()(
const
vectord
&
x
)
const
{
double
x1_2
=
x
(
0
)
*
x
(
0
);
double
x2_2
=
x
(
1
)
*
x
(
1
);
double
tmp1
=
(
4
-
2.1
*
x1_2
+
(
x1_2
*
x1_2
)
/
3
)
*
x1_2
;
double
tmp2
=
x
(
0
)
*
x
(
1
);
double
tmp3
=
(
-
4
+
4
*
x2_2
)
*
x2_2
;
return
tmp1
+
tmp2
+
tmp3
;
}
matrixd
solutions
()
const
{
matrixd
sols
(
2
,
2
);
sols
<<=
0.0898
,
-
0.7126
,
-
0.0898
,
0.7126
;
return
sols
;
}
};
template
<
typename
Function
>
class
Benchmark
:
public
bayesopt
::
ContinuousModel
{
class
Benchmark
:
public
bayesopt
::
ContinuousModel
{
public:
Benchmark
(
bopt_params
par
)
:
ContinuousModel
(
Function
::
dim_in
,
par
)
{}
double
evaluateSample
(
const
vectord
&
xin
)
{
return
f
(
xin
);
}
bool
checkReachability
(
const
vectord
&
query
)
{
return
true
;};
double
accuracy
(
double
x
)
{
matrixd
sols
=
f
.
solutions
();
double
diff
=
std
::
abs
(
x
-
f
(
row
(
sols
,
0
)));
double
min_diff
=
diff
;
for
(
size_t
i
=
1
;
i
<
sols
.
size1
();
i
++
)
{
diff
=
std
::
abs
(
x
-
f
(
row
(
sols
,
i
)));
if
(
diff
<
min_diff
)
min_diff
=
diff
;
Benchmark
(
bopt_params
par
)
:
ContinuousModel
(
Function
::
dim_in
,
par
)
{}
double
evaluateSample
(
const
vectord
&
xin
)
{
return
f
(
xin
);
}
return
min_diff
;
}
bool
checkReachability
(
const
vectord
&
query
)
{
return
true
;
};
Function
f
;
double
accuracy
(
double
x
)
{
matrixd
sols
=
f
.
solutions
();
double
diff
=
std
::
abs
(
x
-
f
(
row
(
sols
,
0
)));
double
min_diff
=
diff
;
for
(
size_t
i
=
1
;
i
<
sols
.
size1
();
i
++
)
{
diff
=
std
::
abs
(
x
-
f
(
row
(
sols
,
i
)));
if
(
diff
<
min_diff
)
min_diff
=
diff
;
}
return
min_diff
;
}
Function
f
;
};
src/benchmarks/limbo/hp_opt.cpp
View file @
710e01b1
...
...
@@ -8,52 +8,51 @@
using
namespace
limbo
;
struct
Params
{
struct
bayes_opt_bobase
{
BO_PARAM
(
bool
,
stats_enabled
,
false
);
};
struct
bayes_opt_boptimizer
{
BO_PARAM
(
double
,
noise
,
1e-10
);
BO_PARAM
(
int
,
dump_period
,
-
1
);
BO_PARAM
(
int
,
hp_period
,
1
);
};
struct
stop_maxiterations
{
BO_PARAM
(
int
,
iterations
,
190
);
};
struct
kernel_maternfivehalfs
{
BO_PARAM
(
double
,
sigma
,
1
);
BO_PARAM
(
double
,
l
,
1
);
};
struct
acqui_ucb
{
BO_PARAM
(
double
,
alpha
,
0.125
);
};
struct
init_randomsampling
{
BO_PARAM
(
int
,
samples
,
10
);
};
struct
SquaredExpARD
:
public
defaults
::
SquaredExpARD
{
};
struct
mean_constant
{
BO_PARAM
(
double
,
constant
,
1
);
};
struct
opt_rprop
:
public
defaults
::
opt_rprop
{
};
struct
bayes_opt_bobase
{
BO_PARAM
(
bool
,
stats_enabled
,
false
);
};
struct
bayes_opt_boptimizer
{
BO_PARAM
(
double
,
noise
,
1e-10
);
BO_PARAM
(
int
,
dump_period
,
-
1
);
BO_PARAM
(
int
,
hp_period
,
1
);
};
struct
stop_maxiterations
{
BO_PARAM
(
int
,
iterations
,
190
);
};
struct
kernel_maternfivehalfs
{
BO_PARAM
(
double
,
sigma
,
1
);
BO_PARAM
(
double
,
l
,
1
);
};
struct
acqui_ucb
{
BO_PARAM
(
double
,
alpha
,
0.125
);
};
struct
init_randomsampling
{
BO_PARAM
(
int
,
samples
,
10
);
};
struct
kernel_squared_exp_ard
:
public
defaults
::
kernel_squared_exp_ard
{
};
struct
mean_constant
{
BO_PARAM
(
double
,
constant
,
1
);
};
struct
opt_rprop
:
public
defaults
::
opt_rprop
{
};
};
struct
DirectParams
{
struct
opt_nloptnograd
{
BO_DYN_PARAM
(
int
,
iterations
);
};
struct
opt_nloptnograd
{
BO_DYN_PARAM
(
int
,
iterations
);
};
};
struct
BobyqaParams
{
struct
opt_nloptnograd
{
BO_DYN_PARAM
(
int
,
iterations
);
};
struct
opt_nloptnograd
{
BO_DYN_PARAM
(
int
,
iterations
);
};
};
struct
BobyqaParams_HP
{
struct
opt_nloptnograd
{
BO_DYN_PARAM
(
int
,
iterations
);
};
struct
opt_nloptnograd
{
BO_DYN_PARAM
(
int
,
iterations
);
};
};
BO_DECLARE_DYN_PARAM
(
int
,
DirectParams
::
opt_nloptnograd
,
iterations
);
...
...
@@ -85,14 +84,14 @@ void benchmark(const std::string& name)
std
::
cout
<<
"Time running: "
<<
time_running
<<
"ms"
<<
std
::
endl
<<
std
::
endl
;
std
::
ofstream
res_file
(
name
+
".dat"
,
std
::
ios_base
::
out
|
std
::
ios_base
::
app
);
std
::
ofstream
res_file
(
name
+
".dat"
,
std
::
ios_base
::
out
|
std
::
ios_base
::
app
);
res_file
.
precision
(
17
);
res_file
<<
std
::
fixed
<<
accuracy
<<
" "
<<
time_running
<<
std
::
endl
;
}
int
main
()
{
srand
(
time
(
NULL
));
srand
(
time
(
NULL
));
typedef
kernel
::
SquaredExpARD
<
Params
>
Kernel_t
;
typedef
opt
::
Chained
<
Params
,
opt
::
NLOptNoGrad
<
DirectParams
,
nlopt
::
GN_DIRECT_L
>
,
opt
::
NLOptNoGrad
<
BobyqaParams
,
nlopt
::
LN_BOBYQA
>>
AcquiOpt_t
;
...
...
@@ -101,7 +100,7 @@ int main()
typedef
mean
::
Constant
<
Params
>
Mean_t
;
typedef
boost
::
fusion
::
vector
<>
Stat_t
;
typedef
init
::
RandomSampling
<
Params
>
Init_t
;
typedef
model
::
GP
<
Params
,
Kernel_t
,
Mean_t
,
model
::
gp
::
KernelLFOpt
<
Params
,
opt
::
NLOptNoGrad
<
BobyqaParams_HP
,
nlopt
::
LN_BOBYQA
>
>
>
GP_t
;
typedef
model
::
GP
<
Params
,
Kernel_t
,
Mean_t
,
model
::
gp
::
KernelLFOpt
<
Params
,
opt
::
NLOptNoGrad
<
BobyqaParams_HP
,
nlopt
::
LN_BOBYQA
>
>
>
GP_t
;
typedef
acqui
::
UCB
<
Params
,
GP_t
>
Acqui_t
;
typedef
bayes_opt
::
BOptimizer
<
Params
,
modelfun
<
GP_t
>
,
initfun
<
Init_t
>
,
acquifun
<
Acqui_t
>
,
acquiopt
<
AcquiOpt_t
>
,
statsfun
<
Stat_t
>
,
stopcrit
<
Stop_t
>>
Opt_t
;
...
...
src/benchmarks/limbo/simple.cpp
View file @
710e01b1
...
...
@@ -8,42 +8,42 @@
using
namespace
limbo
;
struct
Params
{
struct
bayes_opt_bobase
{
BO_PARAM
(
bool
,
stats_enabled
,
false
);
};
struct
bayes_opt_boptimizer
{
BO_PARAM
(
double
,
noise
,
1e-10
);
BO_PARAM
(
int
,
dump_period
,
-
1
);
BO_PARAM
(
int
,
hp_period
,
-
1
);
};
struct
stop_maxiterations
{
BO_PARAM
(
int
,
iterations
,
190
);
};
struct
kernel_maternfivehalfs
{
BO_PARAM
(
double
,
sigma
,
1
);
BO_PARAM
(
double
,
l
,
1
);
};
struct
acqui_ucb
{
BO_PARAM
(
double
,
alpha
,
0.125
);
};
struct
init_randomsampling
{
BO_PARAM
(
int
,
samples
,
10
);
};
struct
mean_constant
{
BO_PARAM
(
double
,
constant
,
1
);
};
struct
bayes_opt_bobase
{
BO_PARAM
(
bool
,
stats_enabled
,
false
);
};
struct
bayes_opt_boptimizer
{
BO_PARAM
(
double
,
noise
,
1e-10
);
BO_PARAM
(
int
,
dump_period
,
-
1
);
BO_PARAM
(
int
,
hp_period
,
-
1
);
};
struct
stop_maxiterations
{
BO_PARAM
(
int
,
iterations
,
190
);
};
struct
kernel_maternfivehalfs
{
BO_PARAM
(
double
,
sigma
,
1
);
BO_PARAM
(
double
,
l
,
1
);
};
struct
acqui_ucb
{
BO_PARAM
(
double
,
alpha
,
0.125
);
};
struct
init_randomsampling
{
BO_PARAM
(
int
,
samples
,
10
);
};
struct
mean_constant
{
BO_PARAM
(
double
,
constant
,
1
);
};
};
struct
DirectParams
{