with :math:`\Lambda = diag(l_1^2, \dots, l_n^2)` being the characteristic length scales and :math:`\alpha\f$` describing the variability of the latent function. The parameters :math:`l_1^2, \dots, l_n^2, \alpha` are expected in this order in the parameter array.
\endrst
*/
namespacelimbo{
namespacekernel{
/** Squared exponential covariance function with automatic relevance detection.
with :math:`\Lambda = diag(l_1^2, \dots, l_n^2)` being the characteristic length scales and :math:`\alpha` describing the variability of the latent function. The parameters :math:`l_1^2, \dots, l_n^2, \alpha` are expected in this order in the parameter array.
return :math:`mu`, :math:`sigma` (unormalized). If there is no sample, return the value according to the mean function. Using this method instead of separate calls to mu() and sigma() is more efficient because some computations are shared between mu() and sigma().