No need to have parallel repeater as default HP optimizer

parent 6afca247
......@@ -13,7 +13,7 @@ We assume that our samples are in a vector called ``samples`` and that our obser
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 79-88
:lines: 77-86
Basic usage
------------
......@@ -23,14 +23,14 @@ We first create a basic GP with an Exponential kernel (``kernel::Exp<Params>``)
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 61-74
:lines: 61-72
The type of the GP is defined by the following lines:
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 89-93
:lines: 87-91
To use the GP, we need :
......@@ -40,7 +40,7 @@ To use the GP, we need :
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 94-99
:lines: 92-97
Here we assume that the noise is the same for all samples and that it is equal to 0.01.
......@@ -57,7 +57,7 @@ To visualize the predictions of the GP, we can query it for many points and reco
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 101-112
:lines: 99-110
Hyper-parameter optimization
......@@ -71,7 +71,7 @@ A new GP type is defined as follows:
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 114-118
:lines: 112-116
It uses the default values for the parameters of ``SquaredExpARD``:
......@@ -85,7 +85,7 @@ After calling the ``compute()`` method, the hyper-parameters can be optimized by
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 121-123
:lines: 119-121
We can have a look at the difference between the two GPs:
......@@ -115,7 +115,7 @@ We can also save our optimized GP model:
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 140-141
:lines: 138-139
This will create a directory called ``myGP`` with several files (the GP data, kernel hyperparameters etc.). If we want a binary format (i.e., more compact), we can replace the ``TextArchive`` by ``BinaryArchive``.
......@@ -124,6 +124,6 @@ To the load a saved model, we can do the following:
.. literalinclude:: ../../src/tutorials/gp.cpp
:language: c++
:linenos:
:lines: 143-144
:lines: 141-142
Note that we need to have the same kernel and mean function (i.e., the same GP type) as the one used for saving.
\ No newline at end of file
......@@ -105,9 +105,6 @@ BO_PARAMS(std::cout,
struct opt_rprop : public defaults::opt_rprop {
};
struct opt_parallelrepeater : public defaults::opt_parallelrepeater {
};
};)
struct fit_eval {
......
......@@ -93,9 +93,6 @@ struct Params {
struct stop_maxiterations {
BO_PARAM(int, iterations, 100);
};
struct opt_parallelrepeater : defaults::opt_parallelrepeater {
};
};
template <typename Params, typename Model>
......
......@@ -80,7 +80,7 @@ namespace limbo {
/// useful because the model might be created before knowing anything about the process
GP() : _dim_in(-1), _dim_out(-1), _inv_kernel_updated(false) {}
/// useful because the model might be created before having samples
/// useful because the model might be created before having samples
GP(int dim_in, int dim_out)
: _dim_in(dim_in), _dim_out(dim_out), _kernel_function(dim_in), _mean_function(dim_out), _inv_kernel_updated(false) {}
......@@ -153,7 +153,7 @@ namespace limbo {
/**
\\rst
return :math:`\mu`, :math:`\sigma^2` (unormalized). If there is no sample, return the value according to the mean function. Using this method instead of separate calls to mu() and sigma() is more efficient because some computations are shared between mu() and sigma().
return :math:`\mu`, :math:`\sigma^2` (un-normalized). If there is no sample, return the value according to the mean function. Using this method instead of separate calls to mu() and sigma() is more efficient because some computations are shared between mu() and sigma().
\\endrst
*/
std::tuple<Eigen::VectorXd, double> query(const Eigen::VectorXd& v) const
......@@ -193,14 +193,14 @@ namespace limbo {
/// return the number of dimensions of the input
int dim_in() const
{
assert(_dim_in != -1); // need to compute first !
assert(_dim_in != -1); // need to compute first!
return _dim_in;
}
/// return the number of dimensions of the output
int dim_out() const
{
assert(_dim_out != -1); // need to compute first !
assert(_dim_out != -1); // need to compute first!
return _dim_out;
}
......
......@@ -48,7 +48,6 @@
#include <Eigen/Core>
#include <limbo/opt/parallel_repeater.hpp>
#include <limbo/opt/rprop.hpp>
namespace limbo {
......@@ -56,7 +55,7 @@ namespace limbo {
namespace gp {
///@ingroup model_opt
///base class for optimization of the hyper-parameters of a GP
template <typename Params, typename Optimizer = opt::ParallelRepeater<Params, opt::Rprop<Params>>>
template <typename Params, typename Optimizer = opt::Rprop<Params>>
struct HPOpt {
public:
HPOpt() : _called(false) {}
......
......@@ -47,14 +47,13 @@
#define LIMBO_MODEL_GP_KERNEL_LF_OPT_HPP
#include <limbo/model/gp/hp_opt.hpp>
#include <limbo/tools/random_generator.hpp>
namespace limbo {
namespace model {
namespace gp {
///@ingroup model_opt
///optimize the likelihood of the kernel only
template <typename Params, typename Optimizer = opt::ParallelRepeater<Params, opt::Rprop<Params>>>
template <typename Params, typename Optimizer = opt::Rprop<Params>>
struct KernelLFOpt : public HPOpt<Params, Optimizer> {
public:
template <typename GP>
......@@ -96,8 +95,8 @@ namespace limbo {
const GP& _original_gp;
};
};
}
}
}
} // namespace gp
} // namespace model
} // namespace limbo
#endif
......@@ -47,14 +47,13 @@
#define LIMBO_MODEL_GP_KERNEL_LOO_OPT_HPP
#include <limbo/model/gp/hp_opt.hpp>
#include <limbo/tools/random_generator.hpp>
namespace limbo {
namespace model {
namespace gp {
///@ingroup model_opt
///optimize the likelihood of the kernel only
template <typename Params, typename Optimizer = opt::ParallelRepeater<Params, opt::Rprop<Params>>>
template <typename Params, typename Optimizer = opt::Rprop<Params>>
struct KernelLooOpt : public HPOpt<Params, Optimizer> {
public:
template <typename GP>
......@@ -96,8 +95,8 @@ namespace limbo {
const GP& _original_gp;
};
};
}
}
}
} // namespace gp
} // namespace model
} // namespace limbo
#endif
......@@ -47,14 +47,13 @@
#define LIMBO_MODEL_GP_KERNEL_MEAN_LF_OPT_HPP
#include <limbo/model/gp/hp_opt.hpp>
#include <limbo/tools/random_generator.hpp>
namespace limbo {
namespace model {
namespace gp {
///@ingroup model_opt
///optimize the likelihood of both the kernel and the mean (try to align the mean function)
template <typename Params, typename Optimizer = opt::ParallelRepeater<Params, opt::Rprop<Params>>>
template <typename Params, typename Optimizer = opt::Rprop<Params>>
struct KernelMeanLFOpt : public HPOpt<Params, Optimizer> {
public:
template <typename GP>
......@@ -109,8 +108,8 @@ namespace limbo {
const GP& _original_gp;
};
};
}
}
}
} // namespace gp
} // namespace model
} // namespace limbo
#endif
......@@ -47,14 +47,13 @@
#define LIMBO_MODEL_GP_MEAN_LF_OPT_HPP
#include <limbo/model/gp/hp_opt.hpp>
#include <limbo/tools/random_generator.hpp>
namespace limbo {
namespace model {
namespace gp {
///@ingroup model_opt
///optimize the likelihood of the mean only (try to align the mean function)
template <typename Params, typename Optimizer = opt::ParallelRepeater<Params, opt::Rprop<Params>>>
template <typename Params, typename Optimizer = opt::Rprop<Params>>
struct MeanLFOpt : public HPOpt<Params, Optimizer> {
public:
template <typename GP>
......@@ -99,8 +98,8 @@ namespace limbo {
GP _original_gp;
};
};
}
}
}
} // namespace gp
} // namespace model
} // namespace limbo
#endif
......@@ -119,9 +119,6 @@ struct Params {
struct opt_rprop : public defaults::opt_rprop {
};
struct opt_parallelrepeater : public defaults::opt_parallelrepeater {
};
struct acqui_ucb : public defaults::acqui_ucb {
};
......@@ -215,9 +212,6 @@ BOOST_AUTO_TEST_CASE(test_gp_check_lf_grad_noise)
struct opt_rprop : public defaults::opt_rprop {
};
struct opt_parallelrepeater : public defaults::opt_parallelrepeater {
};
struct acqui_ucb : public defaults::acqui_ucb {
};
......@@ -338,9 +332,6 @@ BOOST_AUTO_TEST_CASE(test_gp_check_loo_grad_noise)
struct opt_rprop : public defaults::opt_rprop {
};
struct opt_parallelrepeater : public defaults::opt_parallelrepeater {
};
struct acqui_ucb : public defaults::acqui_ucb {
};
......
......@@ -69,8 +69,6 @@ struct Params {
};
struct opt_rprop : public limbo::defaults::opt_rprop {
};
struct opt_parallelrepeater : public limbo::defaults::opt_parallelrepeater {
};
struct kernel_maternfivehalves {
BO_PARAM(double, sigma_sq, 1);
......@@ -95,8 +93,6 @@ struct LoadParams {
};
struct opt_rprop : public limbo::defaults::opt_rprop {
};
struct opt_parallelrepeater : public limbo::defaults::opt_parallelrepeater {
};
struct kernel_maternfivehalves {
BO_PARAM(double, sigma_sq, 2.);
......
......@@ -69,8 +69,6 @@ struct Params {
};
struct opt_rprop : public defaults::opt_rprop {
};
struct opt_parallelrepeater : public defaults::opt_parallelrepeater {
};
};
int main(int argc, char** argv)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment