random_generator.hpp 6.56 KB
Newer Older
1
2
3
4
//| Copyright Inria May 2015
//| This project has received funding from the European Research Council (ERC) under
//| the European Union's Horizon 2020 research and innovation programme (grant
//| agreement No 637972) - see http://www.resibots.eu
5
//|
6
7
8
//| Contributor(s):
//|   - Jean-Baptiste Mouret (jean-baptiste.mouret@inria.fr)
//|   - Antoine Cully (antoinecully@gmail.com)
9
//|   - Konstantinos Chatzilygeroudis (konstantinos.chatzilygeroudis@inria.fr)
10
11
//|   - Federico Allocati (fede.allocati@gmail.com)
//|   - Vaios Papaspyros (b.papaspyros@gmail.com)
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
12
//|   - Roberto Rama (bertoski@gmail.com)
13
//|
14
15
16
17
18
//| This software is a computer library whose purpose is to optimize continuous,
//| black-box functions. It mainly implements Gaussian processes and Bayesian
//| optimization.
//| Main repository: http://github.com/resibots/limbo
//| Documentation: http://www.resibots.eu/limbo
19
//|
20
21
22
23
24
//| This software is governed by the CeCILL-C license under French law and
//| abiding by the rules of distribution of free software.  You can  use,
//| modify and/ or redistribute the software under the terms of the CeCILL-C
//| license as circulated by CEA, CNRS and INRIA at the following URL
//| "http://www.cecill.info".
25
//|
26
27
28
29
30
//| As a counterpart to the access to the source code and  rights to copy,
//| modify and redistribute granted by the license, users are provided only
//| with a limited warranty  and the software's author,  the holder of the
//| economic rights,  and the successive licensors  have only  limited
//| liability.
31
//|
32
33
34
35
36
37
38
39
40
41
//| In this respect, the user's attention is drawn to the risks associated
//| with loading,  using,  modifying and/or developing or reproducing the
//| software by the user in light of its specific status of free software,
//| that may mean  that it is complicated to manipulate,  and  that  also
//| therefore means  that it is reserved for developers  and  experienced
//| professionals having in-depth computer knowledge. Users are therefore
//| encouraged to load and test the software's suitability as regards their
//| requirements in conditions enabling the security of their systems and/or
//| data to be ensured and,  more generally, to use and operate it in the
//| same conditions as regards security.
42
//|
43
44
//| The fact that you are presently reading this means that you have had
//| knowledge of the CeCILL-C license and that you accept its terms.
45
//|
46
47
48
49
50

#ifndef LIMBO_TOOLS_RANDOM_GENERATOR_HPP
#define LIMBO_TOOLS_RANDOM_GENERATOR_HPP

#include <cmath>
51
#include <cstdlib>
52
#include <ctime>
53
#include <external/rand_utils.hpp>
54
#include <list>
55
#include <mutex>
56
#include <random>
57
#include <stdlib.h>
58
59
60
61
#include <utility>

namespace limbo {
    namespace tools {
Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
62
63
64
65
        /// @ingroup tools
        /// a mt19937-based random generator (mutex-protected)
        ///
        /// usage :
66
        /// - RandomGenerator<dist<double>>(0.0, 1.0);
Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
67
        /// - double r = rgen.rand();
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
68
        template <typename D>
69
70
        class RandomGenerator {
        public:
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
71
            using result_type = typename D::result_type;
72
            RandomGenerator(result_type a, result_type b) : _dist(a, b), _rgen(randutils::auto_seed_128{}.base()) {}
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
73
74
75
76
77
            result_type rand()
            {
                return _dist(_rgen);
            }

78
        private:
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
79
80
            D _dist;
            std::mt19937 _rgen;
81
        };
Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
82
83

        /// @ingroup tools
84
        using rdist_double_t = std::uniform_real_distribution<double>;
Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
85
        /// @ingroup tools
86
        using rdist_int_t = std::uniform_int_distribution<int>;
87
88
        /// @ingroup tools
        using rdist_gauss_t = std::normal_distribution<>;
89

Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
90
91
        /// @ingroup tools
        /// Double random number generator
92
        using rgen_double_t = RandomGenerator<rdist_double_t>;
93

94
95
96
97
        /// @ingroup tools
        /// Double random number generator (gaussian)
        using rgen_gauss_t = RandomGenerator<rdist_gauss_t>;

Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
98
99
        ///@ingroup tools
        ///integer random number generator
100
        using rgen_int_t = RandomGenerator<rdist_int_t>;
101
102

        /// @ingroup tools
103
        /// random vector in [0, 1.0]
104
        ///
105
        /// - this function is thread safe because we use a random generator for each thread
106
        /// - we use a C++11 random number generator
107
        Eigen::VectorXd random_vector_bounded(int size)
108
        {
109
            static thread_local rgen_double_t rgen(0.0, 1.0);
110
111
            Eigen::VectorXd res(size);
            for (int i = 0; i < size; ++i)
112
                res[i] = rgen.rand();
113
114
            return res;
        }
115
116

        /// @ingroup tools
117
        /// random vector generated with a normal distribution centered on 0, with standard deviation of 10.0
118
        ///
119
        /// - this function is thread safe because we use a random generator for each thread
120
121
122
        /// - we use a C++11 random number generator
        Eigen::VectorXd random_vector_unbounded(int size)
        {
123
            static thread_local rgen_gauss_t rgen(0.0, 10.0);
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            Eigen::VectorXd res(size);
            for (int i = 0; i < size; ++i)
                res[i] = rgen.rand();
            return res;
        }

        /// @ingroup tools
        /// random vector wrapper for both bounded and unbounded versions
        Eigen::VectorXd random_vector(int size, bool bounded = true)
        {
            if (bounded)
                return random_vector_bounded(size);
            return random_vector_unbounded(size);
        }
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

        /// @ingroup tools
        /// generate random samples with LHS in [0, 1]^n
        Eigen::MatrixXd random_lhs(int dim, int samples)
        {
            Eigen::VectorXd cut = Eigen::VectorXd::LinSpaced(samples + 1, 0., 1.);
            Eigen::MatrixXd u = Eigen::MatrixXd::Zero(samples, dim);

            for (int i = 0; i < samples; i++) {
                u.row(i) = tools::random_vector(dim, true);
            }

            Eigen::VectorXd a = cut.head(samples);
            Eigen::VectorXd b = cut.tail(samples);

            Eigen::MatrixXd rdpoints = Eigen::MatrixXd::Zero(samples, dim);
            for (int i = 0; i < dim; i++) {
                rdpoints.col(i) = u.col(i).array() * (b - a).array() + a.array();
            }

            Eigen::MatrixXd H = Eigen::MatrixXd::Zero(samples, dim);
            Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic> perm(samples);
            for (int i = 0; i < dim; i++) {
                perm.setIdentity();
                std::random_shuffle(perm.indices().data(), perm.indices().data() + perm.indices().size());
                Eigen::MatrixXd tmp = perm * rdpoints;
                H.col(i) = tmp.col(i);
            }

            return H;
        }
    } // namespace tools
} // namespace limbo
171
172

#endif