gp.hpp 14.8 KB
Newer Older
1
2
3
4
//| Copyright Inria May 2015
//| This project has received funding from the European Research Council (ERC) under
//| the European Union's Horizon 2020 research and innovation programme (grant
//| agreement No 637972) - see http://www.resibots.eu
5
//|
6
7
8
9
10
11
//| Contributor(s):
//|   - Jean-Baptiste Mouret (jean-baptiste.mouret@inria.fr)
//|   - Antoine Cully (antoinecully@gmail.com)
//|   - Kontantinos Chatzilygeroudis (konstantinos.chatzilygeroudis@inria.fr)
//|   - Federico Allocati (fede.allocati@gmail.com)
//|   - Vaios Papaspyros (b.papaspyros@gmail.com)
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
12
//|   - Roberto Rama (bertoski@gmail.com)
13
//|
14
15
16
17
18
//| This software is a computer library whose purpose is to optimize continuous,
//| black-box functions. It mainly implements Gaussian processes and Bayesian
//| optimization.
//| Main repository: http://github.com/resibots/limbo
//| Documentation: http://www.resibots.eu/limbo
19
//|
20
21
22
23
24
//| This software is governed by the CeCILL-C license under French law and
//| abiding by the rules of distribution of free software.  You can  use,
//| modify and/ or redistribute the software under the terms of the CeCILL-C
//| license as circulated by CEA, CNRS and INRIA at the following URL
//| "http://www.cecill.info".
25
//|
26
27
28
29
30
//| As a counterpart to the access to the source code and  rights to copy,
//| modify and redistribute granted by the license, users are provided only
//| with a limited warranty  and the software's author,  the holder of the
//| economic rights,  and the successive licensors  have only  limited
//| liability.
31
//|
32
33
34
35
36
37
38
39
40
41
//| In this respect, the user's attention is drawn to the risks associated
//| with loading,  using,  modifying and/or developing or reproducing the
//| software by the user in light of its specific status of free software,
//| that may mean  that it is complicated to manipulate,  and  that  also
//| therefore means  that it is reserved for developers  and  experienced
//| professionals having in-depth computer knowledge. Users are therefore
//| encouraged to load and test the software's suitability as regards their
//| requirements in conditions enabling the security of their systems and/or
//| data to be ensured and,  more generally, to use and operate it in the
//| same conditions as regards security.
42
//|
43
44
//| The fact that you are presently reading this means that you have had
//| knowledge of the CeCILL-C license and that you accept its terms.
45
//|
46
47
#ifndef LIMBO_MODEL_GP_HPP
#define LIMBO_MODEL_GP_HPP
48
49

#include <cassert>
50
#include <iostream>
51
#include <limits>
52
#include <vector>
53

54
#include <Eigen/Cholesky>
55
56
57
#include <Eigen/Core>
#include <Eigen/LU>

58
#include <limbo/model/gp/no_lf_opt.hpp>
59
#include <limbo/tools.hpp>
60

61
namespace limbo {
62
    namespace model {
Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
63
64
65
66
67
        /// @ingroup model
        /// A classic Gaussian process.
        /// It is parametrized by:
        /// - a mean function
        /// - [optionnal] an optimizer for the hyper-parameters
68
        template <typename Params, typename KernelFunction, typename MeanFunction, class HyperParamsOptimizer = gp::NoLFOpt<Params>>
69
        class GP {
70
        public:
71
            /// useful because the model might be created before knowing anything about the process
72
            GP() : _dim_in(-1), _dim_out(-1) {}
73
74
75

            /// useful because the model might be created  before having samples
            GP(int dim_in, int dim_out)
76
                : _dim_in(dim_in), _dim_out(dim_out), _kernel_function(dim_in), _mean_function(dim_out) {}
77

78
            /// Compute the GP from samples and observations. This call needs to be explicit!
79
            void compute(const std::vector<Eigen::VectorXd>& samples,
80
                const std::vector<Eigen::VectorXd>& observations, bool compute_kernel = true)
81
82
83
84
85
            {
                assert(samples.size() != 0);
                assert(observations.size() != 0);
                assert(samples.size() == observations.size());

Antoine Cully's avatar
Antoine Cully committed
86
87
88
89
                if (_dim_in != samples[0].size()) {
                    _dim_in = samples[0].size();
                    _kernel_function = KernelFunction(_dim_in); // the cost of building a functor should be relatively low
                }
90

91
92
93
94
                if (_dim_out != observations[0].size()) {
                    _dim_out = observations[0].size();
                    _mean_function = MeanFunction(_dim_out); // the cost of building a functor should be relatively low
                }
95

96
97
98
99
100
101
102
                _samples = samples;

                _observations.resize(observations.size(), _dim_out);
                for (int i = 0; i < _observations.rows(); ++i)
                    _observations.row(i) = observations[i];

                _mean_observation = _observations.colwise().mean();
103

104
                this->_compute_obs_mean();
105
106
                if (compute_kernel)
                    this->_compute_full_kernel();
107
            }
108

109
            /// Do not forget to call this if you use hyper-prameters optimization!!
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
110
111
            void optimize_hyperparams()
            {
112
                _hp_optimize(*this);
113
            }
114

115
116
            /// add sample and update the GP. This code uses an incremental implementation of the Cholesky
            /// decomposition. It is therefore much faster than a call to compute()
117
            void add_sample(const Eigen::VectorXd& sample, const Eigen::VectorXd& observation)
118
119
            {
                if (_samples.empty()) {
Antoine Cully's avatar
Antoine Cully committed
120
121
122
123
124
125
126
127
                    if (_dim_in != sample.size()) {
                        _dim_in = sample.size();
                        _kernel_function = KernelFunction(_dim_in); // the cost of building a functor should be relatively low
                    }
                    if (_dim_out != observation.size()) {
                        _dim_out = observation.size();
                        _mean_function = MeanFunction(_dim_out); // the cost of building a functor should be relatively low
                    }
Konstantinos Chatzilygeroudis's avatar
Konstantinos Chatzilygeroudis committed
128
129
                }
                else {
130
131
                    assert(sample.size() == _dim_in);
                    assert(observation.size() == _dim_out);
132
133
                }

134
135
136
137
138
139
140
141
                _samples.push_back(sample);

                _observations.conservativeResize(_observations.rows() + 1, _dim_out);
                _observations.bottomRows<1>() = observation.transpose();

                _mean_observation = _observations.colwise().mean();

                this->_compute_obs_mean();
142
                this->_compute_incremental_kernel();
143
144
            }

145
            /**
146
             \\rst
147
             return :math:`\mu`, :math:`\sigma^2` (unormalized). If there is no sample, return the value according to the mean function. Using this method instead of separate calls to mu() and sigma() is more efficient because some computations are shared between mu() and sigma().
148
149
             \\endrst
	  		*/
150
151
152
153
            std::tuple<Eigen::VectorXd, double> query(const Eigen::VectorXd& v) const
            {
                if (_samples.size() == 0)
                    return std::make_tuple(_mean_function(v, *this),
154
                        _kernel_function(v, v));
155
156

                Eigen::VectorXd k = _compute_k(v);
157
                return std::make_tuple(_mu(v, k), _sigma(v, k));
158
159
160
            }

            /**
161
             \\rst
162
             return :math:`\mu` (unormalized). If there is no sample, return the value according to the mean function.
163
164
             \\endrst
	  		*/
165
166
167
168
169
170
171
172
            Eigen::VectorXd mu(const Eigen::VectorXd& v) const
            {
                if (_samples.size() == 0)
                    return _mean_function(v, *this);
                return _mu(v, _compute_k(v));
            }

            /**
173
             \\rst
174
             return :math:`\sigma^2` (unormalized). If there is no sample, return the max :math:`\sigma^2`.
175
176
             \\endrst
	  		*/
177
178
            double sigma(const Eigen::VectorXd& v) const
            {
179
                if (_samples.size() == 0)
180
                    return _kernel_function(v, v);
181
                return _sigma(v, _compute_k(v));
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
            }

            /// return the number of dimensions of the input
            int dim_in() const
            {
                assert(_dim_in != -1); // need to compute first !
                return _dim_in;
            }

            /// return the number of dimensions of the output
            int dim_out() const
            {
                assert(_dim_out != -1); // need to compute first !
                return _dim_out;
            }

            const KernelFunction& kernel_function() const { return _kernel_function; }

200
            KernelFunction& kernel_function() { return _kernel_function; }
201
202
203
204
205

            const MeanFunction& mean_function() const { return _mean_function; }

            MeanFunction& mean_function() { return _mean_function; }

Jean-Baptiste Mouret's avatar
Jean-Baptiste Mouret committed
206
            /// return the maximum observation (only call this if the output of the GP is of dimension 1)
207
208
209
210
211
212
            Eigen::VectorXd max_observation() const
            {
                if (_observations.cols() > 1)
                    std::cout << "WARNING max_observation with multi dimensional "
                                 "observations doesn't make sense"
                              << std::endl;
213
                return tools::make_vector(_observations.maxCoeff());
214
215
216
217
218
            }

            /// return the mean observation (only call this if the output of the GP is of dimension 1)
            Eigen::VectorXd mean_observation() const
            {
219
                // TODO: Check if _dim_out is correct?!
220
221
222
223
224
225
226
227
228
229
230
                return _samples.size() > 0 ? _mean_observation
                                           : Eigen::VectorXd::Zero(_dim_out);
            }

            const Eigen::MatrixXd& mean_vector() const { return _mean_vector; }

            const Eigen::MatrixXd& obs_mean() const { return _obs_mean; }

            /// return the number of samples used to compute the GP
            int nb_samples() const { return _samples.size(); }

231
            ///  recomputes the GP
232
            void recompute(bool update_obs_mean = true, bool update_full_kernel = true)
233
            {
234
235
236
                assert(!_samples.empty());

                if (update_obs_mean)
237
                    this->_compute_obs_mean();
238

239
240
241
242
                if (update_full_kernel)
                    this->_compute_full_kernel();
                else
                    this->_compute_alpha();
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            }

            /// return the likelihood (do not compute it!)
            double get_lik() const { return _lik; }

            /// set the likelihood (you need to compute it from outside!)
            void set_lik(const double& lik) { _lik = lik; }

            /// LLT matrix (from Cholesky decomposition)
            //const Eigen::LLT<Eigen::MatrixXd>& llt() const { return _llt; }
            const Eigen::MatrixXd& matrixL() const { return _matrixL; }

            const Eigen::MatrixXd& alpha() const { return _alpha; }

            /// return the list of samples that have been tested so far
            const std::vector<Eigen::VectorXd>& samples() const { return _samples; }

        protected:
            int _dim_in;
            int _dim_out;

            KernelFunction _kernel_function;
            MeanFunction _mean_function;

            std::vector<Eigen::VectorXd> _samples;
            Eigen::MatrixXd _observations;
            Eigen::MatrixXd _mean_vector;
            Eigen::MatrixXd _obs_mean;

            Eigen::MatrixXd _alpha;
            Eigen::VectorXd _mean_observation;

            Eigen::MatrixXd _kernel;

            Eigen::MatrixXd _matrixL;

            double _lik;

281
282
            HyperParamsOptimizer _hp_optimize;

283
284
285
286
287
288
289
290
            void _compute_obs_mean()
            {
                _mean_vector.resize(_samples.size(), _dim_out);
                for (int i = 0; i < _mean_vector.rows(); i++)
                    _mean_vector.row(i) = _mean_function(_samples[i], *this);
                _obs_mean = _observations - _mean_vector;
            }

291
            void _compute_full_kernel()
292
            {
293
294
295
296
297
298
                size_t n = _samples.size();
                _kernel.resize(n, n);

                // O(n^2) [should be negligible]
                for (size_t i = 0; i < n; i++)
                    for (size_t j = 0; j <= i; ++j)
299
                        _kernel(i, j) = _kernel_function(_samples[i], _samples[j], i, j);
300
301
302
303
304
305
306
307

                for (size_t i = 0; i < n; i++)
                    for (size_t j = 0; j < i; ++j)
                        _kernel(j, i) = _kernel(i, j);

                // O(n^3)
                _matrixL = Eigen::LLT<Eigen::MatrixXd>(_kernel).matrixL();

308
                this->_compute_alpha();
309
310
311
            }

            void _compute_incremental_kernel()
312
            {
313
                // Incremental LLT
314
                // This part of the code is inpired from the Bayesopt Library (cholesky_add_row function).
315
316
                // However, the mathematical fundations can be easily retrieved by detailling the equations of the
                // extended L matrix that produces the desired kernel.
317

318
319
                size_t n = _samples.size();
                _kernel.conservativeResize(n, n);
320

321
                for (size_t i = 0; i < n; ++i) {
322
                    _kernel(i, n - 1) = _kernel_function(_samples[i], _samples[n - 1], i, n - 1);
323
                    _kernel(n - 1, i) = _kernel(i, n - 1);
324
325
                }

326
327
328
329
330
331
                _matrixL.conservativeResizeLike(Eigen::MatrixXd::Zero(n, n));

                double L_j;
                for (size_t j = 0; j < n - 1; ++j) {
                    L_j = _kernel(n - 1, j) - (_matrixL.block(j, 0, 1, j) * _matrixL.block(n - 1, 0, 1, j).transpose())(0, 0);
                    _matrixL(n - 1, j) = (L_j) / _matrixL(j, j);
332
333
                }

334
335
                L_j = _kernel(n - 1, n - 1) - (_matrixL.block(n - 1, 0, 1, n - 1) * _matrixL.block(n - 1, 0, 1, n - 1).transpose())(0, 0);
                _matrixL(n - 1, n - 1) = sqrt(L_j);
Antoine Cully's avatar
Antoine Cully committed
336

337
                this->_compute_alpha();
338
339
            }

340
            void _compute_alpha()
341
            {
342
                // alpha = K^{-1} * this->_obs_mean;
343
                Eigen::TriangularView<Eigen::MatrixXd, Eigen::Lower> triang = _matrixL.template triangularView<Eigen::Lower>();
344
345
                _alpha = triang.solve(_obs_mean);
                triang.adjoint().solveInPlace(_alpha);
346
347
348
349
350
351
352
353
354
            }

            Eigen::VectorXd _mu(const Eigen::VectorXd& v, const Eigen::VectorXd& k) const
            {
                return (k.transpose() * _alpha) + _mean_function(v, *this).transpose();
            }

            double _sigma(const Eigen::VectorXd& v, const Eigen::VectorXd& k) const
            {
355
356
                Eigen::VectorXd z = _matrixL.triangularView<Eigen::Lower>().solve(k);
                double res = _kernel_function(v, v) - z.dot(z);
357
358
359
360
361
362
363
364
365
366
367
368
369
370

                return (res <= std::numeric_limits<double>::epsilon()) ? 0 : res;
            }

            Eigen::VectorXd _compute_k(const Eigen::VectorXd& v) const
            {
                Eigen::VectorXd k(_samples.size());
                for (int i = 0; i < k.size(); i++)
                    k[i] = _kernel_function(_samples[i], v);
                return k;
            }
        };
    }
}
371

372
#endif